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An exact Eulerian formulation of the problem of diffusion of passive scalar and vector 
fields by a turbulent velocity field is obtained. It is shown that, in the short auto- 
correlation time limit, the diffusion equation is exact for any turbulence. For non-zero 
autocorrelation times the form of the first few correction terms to the diffusion 
equation is found. As a result of these corrections the diffusion of scalar, divergence- 
free and curl-free vector fields will be different. The calculations use the Kubo-Van 
Kampen-Terwiel technique and are carried out for zero ordinary diffusivity and for 
homogeneous, stationary, isotropic, incompressible, helical turbulence. 

1. Introduction 
The subject of this paper is the problem of the diffusion of passive scalar and vector 

fields by a turbulent velocity field. In  spite of much attention this problem is still 
far from being fully understood. The nonlinear problem in which the convected field 
is allowed to react back on the turbulent flow is a much harder problem and will not 
be considered here. 

The early authors (Batchelor 1959; Saffman 1963) sought to simplify the problem 
by replacing the exact equations by approximate models based on physical ideas. 
Related ideas were used by Parker (1971) to argue that passive scalar and vector 
fields diffuse in the same way. Many authors tackled the problem directly by using 
the mean-field or Bourret approximation (Bourret 1962a, b ;  Brissaud & Frisch 1974; 
Van Kampen 1976) to obtain a closed equation for the mean field. Others (Kraichnan 
1961, 1966; Roberts 1961) used the more refined direct-interaction approximation, 
designed to avoid certain time secularities of conventional perturbation theory 
(Weinstock 1969; Van Kampen 1976; but see Brissaud & Frisch 1974). Parker’s con- 
clusions were subsequently criticized by Moffatt (1974) and Kraichnan ( 1 9 7 6 4 .  Both 
Parker and Moffatt used the Lagrangian description of the diffusion process. Recently, 
however, Kraichnan ( 1 9 7 6 4  suggested that the Eulerian description might be more 
useful and used it to point out the importance of helicity fluctuations in the diffusion 
process. 

The purpose of this paper is the clarification of the mathematical structure of the 
problem of the diffusion of scalar and vector fields by a prescribed turbulent velocity 
field. This structure has hitherto remained obscure. The problem is essentially that 
of solving stochastic differential equations. At present there are two main methods 
available for solving these equations. The first, due to Weinstock (1969) and Balescu & 
Misguich (1975), is a generalization of Bourret’s original method, and yields an 
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integro-differential equation for the mean field. The second, due to Kubo (1963), 
Van Kampen (1974a, b )  and Terwiel (1974), is essentially an expansion in terms of 
the cumulants of the stochastic operator, and results in a differential equation for 
the mean field. Neither of these methods has hitherto been applied to the present 
problem. 

In this paper we obtain an exact Eulerian formulation of the problem in terms of 
an integro-differential equation for the mean field, following the method of Balescu & 
Misguich (1975). This equation can be solved by a perturbation method. For homo- 
geneous isotropic non-helical turbulence in which the velocity correlation time can be 
neglected (the short autocorrelation time approximation), the perturbation series can 
be evaluated. We find, in agreement with Kraichnan (1968), that the mean field obeys 
a diffusion equation for any turbulence. For helical turbulence, an exact dynamo 
equation is obtained. 

For non-zero correlation times the perturbation series can be put into the cumulant- 
expansion form by the method of Terwiel (1974). This procedure is valid in the case 
of zero ordinary diffusivity. In  this case the mean field obeys a more complicated 
partial differential equation. In this equation different terms dominate depending on 
the length scale of interest. We calculate the fist two correction terms to the diffusion 
equation, and find that the diffusion equation is valid only on sufficiently large scales 
(small wavenumbers), and then with the turbulent diffusivity replaced by a new, 
renormalized turbulent diffusivity. For a magnetic field the dynamo equation is also 
valid only for small wavenumbers. This time the mean helicity also has to be re- 
normalized. Owing to this renormalization the diffusion of scalar and vector fields 
will differ. It is found that the diffusion of a scalar field is reduced, while the renormal- 
ized diffusivity of a magnetic field could actually be negative as a result of helicity 
fluctuations, in agreement with Kraichnan (19764.  The diffusion of a curl-free vector 
field is not affected by helicity fluctuations. 

2. The master equation for stochastic differential equations 
In this section we shall develop the basic theory used in solving the equation 

[apt  + W l f ( t )  = 0, (1)  

L(t) = L(t) +L’(t), (2) 

where L(t) is a stochastic operator, independent off(t). Let 

where z(t) = (L( t ) )  and L’(t) is the fluctuating part of L(t). The angular brackets 
denote an ensemble average. f ( t )  is similarly decomposed. Following Weinstock (1969) 
we define the projection operator A ,  which takes the average of everything to its right, 
and the propagator UA(t, to)  by the equations 

(3) 

By operating on (1)  from the left by A and 1 - A  respectively, and eliminating f ’ ( t )  
from the resulting equations using (3), we obtain the exact master equation 

[a/at + ( 1  -A)L( t ) ]  &(t, t o )  = 0, UA(t0, t o )  = 1.  
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We now express the propagator UA(t, to) in terms of the propagator Uo(t, to) defined by 

[ap t  + E ( t ) ]  Uo(t, t o )  = 0, Uo(t0, t o )  = 1. (5) 

(a/at+E)uA = (EA-(l-A)L’)UA. (6) 

This propagator will be assumed to be known. From (3) we obtain 

Hence, using the definition of the propagator U,, we obtain 

UA(t,tO) = ~ o ~ t , t , ) + ~ ~ ~ ~ t l ~ o ~ t , ~ l ~ ~ E ~ t , ~ A -  (1  --4)L’(t,)1 UA(tl,tO). 

UA(t, t o )  = Uo(k t o )  + j-; dt, UoV, t l )  [m,) A - (1 - A )  L’(t,)l Uo(t,, t o )  + * * .  * 

( 7 )  

This integral equation can be solved by a perturbation expansion and enables us to 
express the master equation (4) in terms of the propagator U,: 

(8) 

Using the identity A ,  = A ,  the general term in this expression is found to be of the 
form 

where Q is an operator. On substituting into (4) the terms involving the Q’s drop out. 
We obtain 

(9) QA + ( - l), Uo(I - A )  L’Uo(I - A)L’  ... Uo(I - A )  L’U,, 

[ap t  + E ( t ) ] f ( t )  = dt‘ L’(t) 
I t :  

x expo ( - f dt, UoV, t,) (1 - A )  L‘(t,) uoct,, t ’ )  L’(t’) m, (10) 
t’ 1 ) 

where the subscript zero on the exponential denotes the usual time ordering. In  
writing (10) we have dropped the initial-value contribution because it may be assumed 
that f ’ ( t o )  is uncorrelated with the velocity field at  all later times, or that it is zero. 
This assumption is convenient if we are interested in the long-term behaviour of the 
solution. 

Equation (10) is exact. Equivalent equations have been given by Terwiel (1974) 
and Balescu & Misguich (1975). 

3. The short autocorrelation time approximation 
In general the expression (10)  is very hard to evaluate, particularly as there is no 

theory that could be used to calculate all the moments of the turbulent velocity field. 
However, (10) can be evaluated easily in the short autocorrelation time approximation. 

Consider the quantities b, defined by 

bn(tl,t,, *..)tn) 

= ( -  1)”(L’(t,) Uo(t1,t ,)( l-A)L’(t ,)  Uo(t,,t,) Uo(tn-l,tn)(l-A)L’(tn)), (11) 

where t, > t ,  > t ,  ... > t,. It can be shown (Terwiel 1974) that the quantities b, have 
the cluster property, namely that b, 0 whenever the arguments t,, . . . , t, can be 
divided into two or more groups in such a way that for ti and t j  belonging to different 
groups one has Iti-tjl  2 7,) where rc is the autocorrelation time of L’(t). We conclude 
that b, is non-zero only when 

(12) t l - t ,  5 (?Z-I)Tc. 

5-2 
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In  the short autocorrelation time approximation 7, -+ 0. Let 

b,ft,, **.,tn) @1-t,). 

Substituting the approximation (13) into (lo), we obtain 

(a/at+L).f(q = T ( L ’ ( ~ )  L’(t)).f(t), (14) 

(15) 

Thus only the first term in (10) contributes in this limit. This is in agreement with the 
result of Kraichnan (1968). Equation (14) can be evaluated for the case of turbulent 
diffusion of scalar and vector fields. 

where the integral correlation time 7 is defined by 

(L’(t) Uo(t - tl) L’(t,)) = 7(L’(t) L’(t)) s(t - tl). 

A scalar field 
The equation describing the turbulent diffusion of a passive scalar field is 

[slat - K v ~  i- u(x, t )  . VI $(x, t )  = 0, (16) 

where U(X, t )  is a homogeneous turbulent velocity field with zero mean. Writing this 
equation in the form ( l ) ,  we define the operators 

- 

L = -  K v 2 ,  L’ = u ( X ,  t )  .v. (171, (18) 

where (ui(x, t )  uj(x, t ) )  = ~ ( t )  a i j )  ~ ( t )  > 0. (20) 

We thus have enhanced diffusion, the effective scalar diffusivity being increased to 
K + 77. Equation (19) is independent of the helicity of the turbulence. 

A divergence-free vector field 
The equation describing the turbulent diffusion of a passive divergence-free vector 
field is the induction equation 

The above theory can be formally applied to this equation by taking the propagators 
and stochastic operators to be second-rank tensor operators. Thus, writing (21) in 

(22) 

(23) 

(24) 

(25) 

the form (11, we define L , ,  = - h & p ,  

L ; ~  = -6ij u,a/ax, - aui/axj. 

piat - A V ~ I  (B(x, t ) )  = 7 ( ~ ’ ( t ) .  ~ ’ ( t ) ) .  ( B ( x ,  t ) ) .  

(ui(x, t )  au,(x, t)/ax,) = QW) e i k j j  

23 

Equation (14) becomes 

For isotropic helical turbulence we have, in addition to (20), the relation 

where h is the mean helicity. Using incompressibility we obtain 

( L ; ~  L;,) = Y ( t )  vvi, + hh(t) ejik apx,, 
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so that (24) becomes 

~ ( B ( x ,  t ) ) /at  = ( A  + Y T )  V 2 ( B ( x ,  t ) )  - &hTV x ( B ( x ,  t ) ) .  (27) 

This is the usual dynamo equation (Moffatt 1970) thought to describe the amplification 
of magnetic fields in astrophysical objects. We have shown that it is exact for any 
turbulence in the short autocorrelation time approximation. For stationary turbulence 
in which 7 and h are independent of time, (27) has the exact Fourier-transformed 
solution (Vainshtein 1970; Moffatt 1970) 

( B ( k , t ) )  = exp[-(h+r7)k2t][B(k,0)cosh ( $ k h 7 t ) - ( i / k ) k x  B(k,O)sinh(+kh7t)], (28) 

showing that dynamo amplification can occur only on scales such that 

2n/k > 6n(h + q ~ ) / l h I ~ .  (29) 

This minimum scale has to  be smaller than a typical dimension of the system. 
Equation (27) was obtained by Kazantsev (1968) and Vainshtein (1970) for Gaussian 

turbulence by a method involving the summation of time-ordered reducible graphs. 
However, they did not implement the short autocorrelation time approximation con- 
sistently because they had b,  proportional t o  a product of n time &functions, instead 
of just one. I n  the short autocorrelation time limit only the first graph is present, and 
the result is valid for any turbulence. A similar error was made by Vainshtein (1972) 
and Vainshtein & Zel’dovich (1972). 

I n  the absence of helicity, (19) and (27) are the same. 

A curl-free vector Jield 
A passive curl-free vector field is proportional to the vector representing a material 
surface element. Its turbulent diffusion is therefore described by the equation 

(Batchelor 1967, p. 132). Writing this equation in the form ( l ) ,  we have 

Li, = -A&V2 (31) 

and L ; ~  = &ik%j a p X i  + auklaxi. (32) 

Equation (24) can be evaluated for isotropic incompressible helical turbulence. 
Noting that V x G = 0, the result is found to be the same as (19), again independent 
of the helicity. 

4. Finite autocorrelation time 
I n  this section we shall discuss the properties of the solution (10) in the general and 

realistic case of non-negligible autocorrelation time. I n  order to demonstrate the 
differences between the diffusion of scalar and vector fields, we shall for simplicity 
consider the case of zero ordinary diffusivity, so that the operator E vanishes and the 
propagators Uo can be replaced by unity. Equation (10) becomes 

I a -  1 1 
3 f ( t )  = s dt’(L’(t)  expo { - / dt,( 1 - A )  L’(t,) L ’ ( t ’ ) ) f ( t ’ ) .  

1. t’ 
(33) 
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This equation may be written as a cumulant expansion by the method of Terwiel 
(1974) and Van Kampen (19743). We obtain (with to = 0) 

Here the triple brackets denote an ordered cumulant defined by the following four 
rules: 

(i) Write down a sequence of m dots. 
(ii) Partition them into non-empty subsequences (. . .) by inserting angular 

(iii) For each partition consisting o fp  subsequences supply a factor ( -  1)p-I. 

(iv) In  each partition write L’(t) on the first dot and any permutation of 

brackets in all possible ways. 

L’(t1)) L’(tm-1) 

on the remaining dots subject to the condition that each subsequence is correctly 
time ordered. Finally, add up all such partitions. 

For commuting operators these cumulants reduce to the usual ones. Observe that 
(34) is a differential equation rather than an integro-differential equation. From (35) 
we see that K ,  = O ( l . L ’ l m ~ r - ~ ) ,  so that (34) is a series expansion in powers of the 
autocorrelation time. 

We now apply the results (34) and (35) to turbulent diffusion. We evaluate, for 
homogeneous, stationary, isotropic, incompressible turbulence, the first three terms 
in (34): 

A sculur field 

For the turbulent diffusion of a scalar field the operator L’(t) is given by (18). Equation 
(36) can be simplified using homogeneity and incompressibility. Furthermore, we 
observe that for isotropic turbulence the three-velocity correlations do not contribute 
because the only isotropic tensor with three free indices is antisymmetric, and these 
velocity correlations are contracted into symmetric multiple derivatives. We obtain 
(see appendix) 

(37) 
a 
- at (#(X)t)) = ( ( T 2 + ~ 3 + ~ 4 ) v 2 + ~ 4 v 2 v 2 +  * * * } ( # ( X , t ) ) 9  
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1 1  
where q2 = I0 dt,(u,u;), 
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( 3 8 4  

-~[(uiu;)(u(i ’u;) + (uiu;)(u;u~) + (uiu;)(u;u;)]}. ( 3 8 4  

We have used the notation u = u ( t ) ,  u’ = u(tl), etc., and aj E a/axj. The derivatives 
are understood to operate only on the velocity immediately following. 

Equation (37) should be compared with (19) for K = 0. We observe that the correc- 
tion terms due to the non-vanishing of the autocorrelation time have two distinct 
effects. First, they alter the coefficient of the diffusion term. In  general the n-velocity 
correlation will add a correction qn to the turbulent diffusivity, as well as adding a 
correction to each of the higher-order terms ( Q n). Second, they change the diffusion 
equation into a more complicated partial differential equation by introducing higher 
spatial derivatives. We see therefore that the diffusion equation is a good approxi- 
mation only for small wavenumbers. Even in this case, however, the usual turbulent 
diffusivity q2 is replaced by a renormalized diffusivity r* given by 

m 

On smaller scales the higher-order derivatives have to be taken into account. 

A divergence-free vector field 
For the turbulent diffusion of a magnetic field the operator Lij is given by (23). 
Equation (36) can again be simplified using homogeneity, incompressibility and 
isotropy. For helical turbulence we obtain (see appendix) 

t ) ) /a t  
= { - (a ,+a3+a4)Vx  +(q2+rl3+q4+~i)V2-P4Vx V2+p4V2V2+ ...}( B ( x , t ) ) .  (40) 

The coefficients ai, P4 and qi are given in the appendix. Equation (40) is to be com- 
pared with (23). We observe again the general features noted in connexion with the 
scalar field diffusion. Thus for small wavenumbers (27) is a good approximation, 
provided the correct renormalized diffusivity is used, and provided also that the 
helicity is renormalized: 

(D 

a* = a,. (41) 
n=2 

We observe, however, one additional important property of (40). In the absence of 
helicity (40) does not reduce to (37) owing to the presence of the term 7;. This term is 
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obtained from 

1: dt,j: at2/: dt3((aqupu~u~a,u~> -(a,u,u~u,"a,.u~) + (aqupu~a,u~u~> 

-(~,a,u;u::a,u~>+(a,aquiu:,u;:u:>- (u,uiul:a,.a,u;) 

+ (up Uia, u; a,ur> + (up ap; u: a,.;> + (up a,U; a,u; u:> 

+ (a,U, U; U: a,.;) + (a, ui u;, a,uf u:) + (alui a,u;u;q) ap a, B, 

(aqup U;U: a,$> a, a, Em = - &(aquP U;U: a, u;) v=Bi 

(42) 

(43) 

(44) 

using isotropy and the condition a, B, = 0. We obtain 

and 
(a, ui a, u;~; u:> ap a, Bi = & p(a,  up ap u;.: u:> - (a, up ~,u;u;: u:)] v2Bi. 

The coefficient 7; can be calculated from (43) and (44) and their counterparts. 
In  order to investigate the significance of this coefficient we shall suppose that the 

velocity autocorrelation time is short so that the quantity (42) can be approximated 
by setting all the time arguments in the integrand equal. Then the first six terms 
cancel in pairs while the remaining six give a contribution 

6(-- aui auj upus). 
ax, axm (45) 

This is essentially the two-helicity correlation. We conclude tha t  as a result of the 
non-zero correlation (45) the turbulent diffusion of a passive scalar field will differ 
from that of a passive magnetic field, contrary to the statement of Parker (1971). 
Parker's proof, however, is in error because it is equivalent to keeping only the first 
term in the expansion (10). The quantity (45) can be expected to give a negative 
contribution to (40). To show this we approximate the quantity (45) using the assump- 
tion that the velocity field is normally distributed. From (44) we obtain for isotropic 
incompressible turbulence 

(ajuiamujUyU,> a , a s B m  E +~[4(a~upu,>(apu~uJ - (a~upu ,>(a ,u~up>~V~~,  

= - L h 2  1 8  V2zi  (46) 

using (25). Here h2 denotes the mean-square helicity and will be positive even in 
turbulence with zero mean helicity. This result was obtained, somewhat heuristically, 
by Kraichnan ( 1 9 7 6 ~ ) .  We note that in general the first six terms in the quantity (42) 
will also contribute to 76. 

In the short autocorrelation time approximation r4 is also negative definite, the 
quantity 

being the mean-square shear correlation. The presence of these two terms raises the 
possibility that the renormalized turbulent diffusivity r* could be negative, at  least 
for sufficiently large times. This would cause amplification of the mean magnetic field 
(Kraichnan 1976a, b) .  Further differences between the diffusion of scalar and mag- 
netic fields would be found on calculating further terms in the series (34). 
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A curl-free vector jield 

For the turbulent diffusion of a gradient the operator L,ij is given by (32). Equation 
(36) can again be simplified using homogeneity, incompressibility and isotropy. Using 
the fact that G is a gradient we obtain (see appendix) 

a(G(x, t)>/at = ( (72+  73 + r4)V2+/C,V2V2 + -. .)(G(x, t ) ) ,  (48) 

which is independent of the mean helicity of the turbulence. Equation (48) can be 
obtained by taking the gradient of (37). This is because the vector field G is the gradient 
of a scalar field, so that its diffusion is described by the gradient of (16). Some general 
observations related to this problem have been made by Moffatt (1972). 

5. Discussion 
In  the preceding section we calculated the first three terms in the differential 

equation describing the behaviour of the mean field in turbulent diffusion, under the 
assumption of zero normal diffusivity. They are the first three terms in a series expan- 
sion in powers of 7,. The conditions for the convergence of the series (34) will be con- 
sidered in a future paper. 

The assumption of zero normal diffusivity is an important one, for it enables us to 
use the Van Kampen-Terwiel formalism, which is known to be free from secular 
terms (Van Kampen 1 9 7 4 ~ )  1976; Terwiel 1974). For example, one can easily demon- 
strate that  it gives the exact answer to  Bourret's (1965) pseudo-oscillator, as well as 
to other problems where the exact solutions are known. In  general the Van Kampen- 
Terwiel technique can be extended to cases where there is a non-zero sure operator L 
as well as the stochastic operator L', by use of the interaction representation. However, 
for the problem of this paper this resource is not available, for the following reason. 
I n  the interaction representation (1)  becomes 

#/at = Ef, (49) 

where zf = eLtL'e-Lt, f = eLtf. (50) 

With L defined by (17), (50) requires the definition of the operators exp (KtV2) and 
exp ( - K ~ V ~ ) .  The former is well defined because it is bounded in wavenumber space. 
Infact  

exp(KtV2) = Uo(t) = (Kt)-3 1 dx,exp ( - l",fol') 
The latter operator is, however, undefined because it is unbounded. This can be 
understood physically, because diffusion is an irreversible process, so that no inverse 
operator can exist. Hence, contrary to Van Kampen (1976), this method cannot be 
applied in the case where L is the diffusion operator. 

When K > 0, the method of 0 2 has to be used. This method is an extension of that 
due to Weinstock (1969) and Balescu & Misguich (1975). The Bourret (1962a)b) or 
mean-field approximation consists of keeping the first term in (10) and discarding the 
remainder. Although this method generally works (Brissaud & Frisch 1974), it can 
contain secular terms leading to the breakdown of the approximation for large times 
(Van Kampen 1976). However, one can argue, following Kraichnan ( 1 9 7 6 4 ,  that if 
the velocity spectrum is peaked in wavenumber space a t  k,, and f varies little on 
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scales of kil and the eddy circulation time, then the smearing effect of the propagator 
U, will be negligible during the time 7,. In  that case the method of $ 4  can again be 
used, with the proviso that the renormalized diffusivity also includes K .  

The method of this paper enabled us to obtain a general solution to the problem of 
turbulent diffusion. Equations (10) and (34) show clearly that all the velocity cor- 
relations are required for a complete description of the diffusion process. Unfortunately 
at present they are of limited value because knowledge of these velocity correlations 
is lacking. However, our approach showed systematically that higher-order cor- 
relations are responsible for the differences between scalar and vector field diffusion. 
These differences cannot, therefore, be predicted within the Bourret approximation 
or the Kraichnan direct-interaction approximation. In  this paper we have explicitly 
calculated the first three terms in a series solution in powers of the velocity auto- 
correlation time; these are sufficient to demonstrate a difference between the diffusion 
of these two kinds of field. 

The author is grateful to Dr Robert Kraichnan, Professor David Layzer and 
Dr Robert Rosner for helpful discussions, and particularly to Professor H. K. Moffatt 
for his comments on the paper. This work was supported in part by the J. F. Kennedy 
Memorial Trust of Great Britain. 

Appendix 
We list here some results about velocity correlations in homogeneous incompressible 

turbulence used in deriving (37), (40) and (48). These results are an extension of those 
of Batchelor (1953) to correlations involving velocities at.the same point but at  
several different times. We have 

(Uia iu; )  = ai(uiu;) = 0, 

(a jUiakU; )  = a,(uia,u;) = 0, 

(A 1) 

(A 2) 

(A 3) 

(A 4)  

(akui u; aj a, u;) - (aj ui a k u i  a,u;> 

= - (a, a, ui .; a,u;> - (a,., a, u; a, u;) = - a,(aj ui U; a, u;) = 0, 

(a,uju;a,aiU;) + (aiujaju;a,u;) = aj(a,UjU;cakU;) = 0, 
(aj ui ak U; a, U; a,#) - (a,ui akui U; a, a,%:) - (a, ui U; a, a, U; a, u;) 

- (a, uiu; a,.; a, ak ur )  + (a, U, U; ak U; a, a, u;) + (a, ui U; u; ak a, a,.;) 

- (aj ak ui u; u; a, a,uy ) 

= (a,uia,zc(ia,u;l.a,u~)-(a,~ia,u;~;Iaka,u~) +(a,a,u,u;a,u; a,$) 

= -(a.u 3 i j l k k r n l  %'.a u"a a uiii)-(aiuia,u;u;Iaka,u~)-(a,a,uiu;u~a,a,u~) = 0, 

(A 5) 
(aiu,u;a,u;a,a,u;) -I- (a,u,u;u;a,a,a,u;) + (a,u,u;a,a,u;a,u;) 

+ (ai uk u; ak a, a, u;) + ( ai U, aj U; U; a, ak u;) + (a, ui aj U; a,< U; a, u:) 

= - (aia,u,~;u;a,a,~~)-(aia,u,~;aku;a,~;)-(aia,uka,~~u;a,~;~ = 0, 
(A61 
(A 7) (UpU;aqU;a,u:) + (upu;u.::aqa+u:)= -(a,u,u;u,"a,u:). 
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For the pseudo-isotropic terms in (40) we need the result 
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- (~,~;aqa,u;)+(~pa,u; ,ak~;)-(a,~i~;a,u~)+(a,uku~aku~)+(a,uiaju;~;)  

= [ ( u p  u;, ak u i )  + (8, u k  uk ak u;) + (8, uk ak u; ui)] + [(a, u p  8, u;) - (a, u.j u; a, .;)I. 
Finally we show that (A 8) 

(A9) 

(A 10) 

[(up .:a, u;) + (u, a, u;u:) + (a, U, U; u;)] ap a, = 0. 

(u,(x) u;(x) u,"(x + r)) + all permutations = O(r3) 

To do this we follow Batchelor (1953, p. 53) and note that 

in helical incompressible turbulence, because 

(A 11)  (. u ~ " ; ) + ( u l ~ u ; ) + ( ~ u ; u I ; )  = -(u,U;u;) a = 0. 
ax, 8x1 
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